Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene

نویسندگان

  • Bruce A. Diner
  • Janine Fan
  • Miles C. Scotcher
  • Derek H. Wells
  • Gregory M. Whited
چکیده

There is a growing interest in the use of microbial fermentation for the generation of high-demand, high-purity chemicals using cheap feedstocks in an environmentally friendly manner. One example explored here is the production of isoprene (C5H8), a hemiterpene, which is primarily polymerized to polyisoprene in synthetic rubber in tires but which can also be converted to C10 and C15 biofuels. The strictly anaerobic, acetogenic bacterium Clostridium ljungdahlii, used in all of the work described here, is capable of glycolysis using the Embden-Meyerhof-Parnas pathway and of carbon fixation using the Wood-Ljungdahl pathway. Clostridium-Escherichia coli shuttle plasmids, each bearing either 2 or 3 different heterologous genes of the eukaryotic mevalonic acid (MVA) pathway or eukaryotic isopentenyl pyrophosphate isomerase (Idi) and isoprene synthase (IspS), were constructed and electroporated into C. ljungdahlii These plasmids, one or two of which were introduced into the host cells, enabled the synthesis of mevalonate and of isoprene from fructose and from syngas (H2, CO2, and CO) and the conversion of mevalonate to isoprene. All of the heterologous enzymes of the MVA pathway, as well as Idi and IspS, were shown to be synthesized at high levels in C. ljungdahlii, as demonstrated by Western blotting, and were enzymatically active, as demonstrated by in vivo product synthesis. The quantities of mevalonate and isoprene produced here are far below what would be required of a commercial production strain. However, proposals are made that could enable a substantial increase in the mass yield of product formation.IMPORTANCE This study demonstrates the ability to synthesize a heterologous metabolic pathway in C. ljungdahlii, an organism capable of metabolizing either simple sugars or syngas or both together (mixotrophy). Syngas, an inexpensive source of carbon and reducing equivalents, is produced as a major component of some industrial waste gas, and it can be generated by gasification of cellulosic biowaste and of municipal solid waste. Its conversion to useful products therefore offers potential cost and environmental benefits. The ability of C. ljungdahlii to grow mixotrophically also enables the recapture, should there be sufficient reducing equivalents available, of the CO2 released upon glycolysis, potentially increasing the mass yield of product formation. Isoprene is the simplest of the terpenoids, and so the demonstration of its production is a first step toward the synthesis of higher-value products of the terpenoid pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid Fuel Production from Synthesis Gas via Fermentation Process in a Continuous Tank Bioreactor (CSTBR) Using Clostridium ljungdahlii

The potential bioconversion of synthesis gas (syngas) to fuels and chemicals by microbial cell has attracted considerable attention in past decade. The feasibility of enhancing syngas bioconversion to ethanol and acetate using Clostridium ljungdahlii in a continuous tank bioreactor (CSTBR), kinetics and mass transfer coefficient of carbon monoxide (CO) utilization were evaluated. Two different ...

متن کامل

Effect of Organic Substrate on Promoting Solventogenesis in Ethanologenic Acetogene Clostridium ljungdahlii ATCC5538

Clostridium ljungdahlii is a strictly anaerobic acetogene known for its ability to ferment a wide variety of substrates to ethanol and acetate. This bacterium presents a complex anaerobic metabolism including the acetogenic and solventogenic phases. In this study, the effect of various carbon sources on triggering the metabolic shift toward solventogenesis was considered. The bacterium was grow...

متن کامل

Sequential Mixed Cultures: From Syngas to Malic Acid

Synthesis gas (syngas) fermentation using acetogenic bacteria is an approach for production of bulk chemicals like acetate, ethanol, butanol, or 2,3-butandiol avoiding the fuel vs. food debate by using carbon monoxide, carbon dioxide, and hydrogen from gasification of biomass or industrial waste gases. Suffering from energetic limitations, yields of C4-molecules produced by syngas fermentation ...

متن کامل

Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis

Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood-Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis usi...

متن کامل

The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD+ Oxidoreductase Essential for Autotrophic Growth

UNLABELLED It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD(+) oxidoreductase which contributes to ATP synthesis by an H(+)-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2018